A multi-valued Boltzmann machine

نویسندگان

  • Chin-Teng Lin
  • C. S. George Lee
چکیده

The idea of Hopfield network is based on the king spin glass model in which each spin has only two possible states: up and down. By introducing stochastic factors into this network and performing a simulated annealing process on it, it becomes a Boltzmann machine which can escape from local minimum states to achieve the global minimum. This paper generalizes the above ideas to multi-value case based on the XY spin glass model in which each spin can be in any direction in a plane. Simply using the gradient descent method and the analog Hopfield network, two different analog connectionist structures and their corresponding evolving rules are first designed to transform the XY spin glass model to distributed computational models. These two analog computational models are single-layered connectionist structures and multi-layered Hopfield analog networks. The latter network eases the node (neuron) computational requirement of the former at the expense of more neurons and connections. With the proposed evolving rules, the proposed models evolve according to a predefined Hamiltonian (energy function) which will decrease until it reaches a (perhaps local) minimum. Since these two structures can easily get stuck in local minima, a multivalued Boltznurnn machine is proposed which adopts the discrete planar spin glass model for the local minimum problem. Each neuron in the multi-valued Boltzmann machine can only take n discrete directions (states). The stochastic simulated annealing method is introduced to the evolving rules of the multi-valued Boltzmann machine to solve the local minimum problem. The multi-valued Boltzmann machine can be applied to the mobile robot navigation problem by defining proper arti3ciul magnetic field on the traverse terrain. This new artificial magnetic field approach for the mobile robot navigation problem has shown to have several advantages over existing graph search and potential field techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-Valued Restricted Boltzmann Machine for Direct Speech Parameterization from Complex Spectra

This paper describes a novel energy-based probabilistic distribution that represents complex-valued data and explains how to apply it to direct feature extraction from complex-valued spectra. The proposed model, the complex-valued restricted Boltzmann machine (CRBM), is designed to deal with complex-valued visible units as an extension of the wellknown restricted Boltzmann machine (RBM). Like t...

متن کامل

Boltzmann machines and energy-based models

We review Boltzmann machines and energy-based models. A Boltzmann machine defines a probability distribution over binary-valued patterns. One can learn parameters of a Boltzmann machine via gradient based approaches in a way that log likelihood of data is increased. The gradient and Laplacian of a Boltzmann machine admit beautiful mathematical representations, although computing them is in gene...

متن کامل

Complex-Valued Restricted Boltzmann Machine for Direct Learning of Frequency Spectra

In this paper, we propose a new energy-based probabilistic model where a restricted Boltzmann machine (RBM) is extended to deal with complex-valued visible units. The RBM that automatically learns the relationships between visible units and hidden units (but without connections in the visible or the hidden units) has been widely used as a feature extractor, a generator, a classifier, pre-traini...

متن کامل

A Spike and Slab Restricted Boltzmann Machine

We introduce the spike and slab Restricted Boltzmann Machine, characterized by having both a real-valued vector, the slab, and a binary variable, the spike, associated with each unit in the hidden layer. The model possesses some practical properties such as being amenable to Block Gibbs sampling as well as being capable of generating similar latent representations of the data to the recently in...

متن کامل

Neural learning for distributions on categorical data

F.X. Albizuri, A.I. Gonzalez, M. Graña, A. d’Anjou University of the Basque Country Informatika Fakultatea, P.K. 649, 20080 Donostia, Spain E-mail: [email protected]; Fax: + 34 943 219306 Abstract. In this paper we define a Boltzmann machine for modelling probability distributions on categorical data, that is, distributions on a set of variables with a finite discrete range. The distribution m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 1995